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Mode Conversion at Diffracting Apertures
in Millimeter and Submillimeter Wave
Optical Systems

J. Anthony Murphy, Member, IEEE, Stafford Withington, Member, IEEE, and Aidan Egan

Abstract— Diffraction effects, which occur when the fields in
a beam waveguide are truncated at absorbing stops, can be
conveniently analyzed using scattering-matrix theory applied to
Gaussian-beam modes. We present recursion relationships for the
elements of the scattering matrix when a nonaxially-symmetric
beam illuminates an axially symmetric stop. We demonstrate
the technique by calculating the total loss and beam profiles
in a system comprising a diagonal horn, a lens, a window, and
two off-axis mirrors. The finite size of each component is taken
into account.

I. INTRODUCTION

N a recent paper we described a technique for determining

the power that is lost when the beam in a beam waveguide is
truncated by an axially symmetric stop [1] [2]. The technique
is based on the principle that for a Gaussian-mode system, with
a given set of mode coefficients, the scale size and form of the
beam at a plane are completely characterized by the Gaussian
radius and phase slippage respectively. Hence, the power lost
at a circular aperture is fully determined by two quantities
both of which are easily calculated using single-mode design
techniques [3].

If a beam waveguide has a number of truncating compo-
nents, the beam profile at the exit pupil and the total loss
depend on the degree to which beam diffracts at each of the
apertures. Consequently, although the technique described in
[2] is invaluable for determining how big a component has to
be in order to avoid truncation, it only gives a limited amount
of information about the way in which a system behaves
when a significant amount of truncation occurs. In this paper,
we describe a numerically-efficient technique for calculating
the beam profiles and loss at any plane in a complicated
quasioptical system for which diffraction losses cannot be
ignored. The scheme provides an excellent way of checking
in detail the performance of systems designed using the above
“single-mode” technique.

The presence of an absorbing stop in a beam waveguide
causes power to be scattered between modes [4]. That is to say,
if we represent the incident beam by a vector whose compo-
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nents are the coefficients of a Gaussian-mode expansion, then
we can truncate the beam by linearly operating on the vector
to produce a new vector which describes the transmitted field.
For this technique to be useful, it must be possible to calculate
the elements of the scattering matrix in a numerically efficient
manner. In this paper, we present recursion relationships for
the elements of the scattering matrix when a non-axially-
symmetric beam illuminates an axially-symmetric stop. We
illustrate the technique by analyzing a system comprising a
diagonal horn, a lens, a window and two off-axis mirrors. The
finite size of each component is taken into account.

II. THEORY

For a circular stop that is coaxial with the direction of propa-
gation and perfectly absorbing outside the transmitting region,
the propagating fields are most conveniently described as a
sum of Associated Laguerre—Gaussian modes F{r,f,z) =
Yo AS QX8 (1, 0, 2) + AS 250 (1, 0, 2), where the modes

are defined by
TW2(n + a)! [2< % )2] 2
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The associated Laguerre polynomials are defined as in [5], and
W, R, and ¢g have their usual significance [6]. If the circular

aperture, at z = 2,, has radius a then the field at the aperture
has the form E,,(r,6,z,) = 0 for r > a, and we can write

ZA a2 (r, 0, 2,)T

2(2 — S )

Eop(r,0,25)
+ ZA A (r,0,2)T, ()

where T denotes a truncated mode. Since a truncated mode is
not a true mode of propagation, some of the power in a given
incident mode will be redistributed between the other modes.
Mathematically, we can write each truncated mode as a sum
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of true propagating modes:

T
"’bg,cos(,r’ 9’ Zo) = Z ana/’naqp%,COS(T, 9, Zo)

and 9T (r,6,2,)" Z e o mae (1,0, 25) . (3)
Because of the symmetry of the aperture, S,/ ., and S,/ ..,
are given by
fna’ na = ;'La’ na — 6001'I exp[2(n - m)]¢0] ’ (4)
where
o o L2 (2) L% (x)e™™
Im,n(xt) = ) n( (5)
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and z; = 2(a/W)?. The field can then be re-expressed in
terms of the propagating modes:

Bap(r,0,20) = > B3 (r, 0, 2,)

+ B ¥ (1,0, 20), ©)
where BY?, = Yo sele, MAC/ We can regard S/°, na

as a scattering matrix, which operates on the vector
ASLS of incident mode coefficients to yield the vector BT,{a,, of
transmitted mode coefficients. Thereafter, the beam propagates
with the new set of mode amplitudes until the next aperture
is encountered.

An important feature of the technique is that it is possible
to derive recursion relationships for the overlap integrals
I2 .(21), and these enable the truncation calculations to be
evaluated analytically. This allows the scattering matrix to be
determined quickly without the need for a whole series of
lengthy numerical integrations. The relationships (for a > 0)
are
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form,n > 0. ©)
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To initiate the above series we need to compute IO (= I3 ),
and these can be determined by using

(10)

(11)
Note, that if we wish to truncate the series at I,‘;‘;:'nz’; L
the last of the recursion relationships above requires determin-
ing I9, , up to ID, Il . upto I}, and

m,n
IZ, , up to I2, etc.

Ig,o =1— exp[-zi]

I8 n = (Ln—1(%t) — Ln(x1)) exp[—=4] -
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TABLE I
BEAM PARAMETERS OF AN OPTICAL SYSTEM COMPRISING A DIAGONAL HORN,
A LeNs AND Two OFF-Axis MIRRORS. THE BEAM PARAMETERS
ARE CALCULATED AT 400 GHz THE HORN 1s 19.0 mm
LONG AND HAS A 3.5 mm SQUARE APERTURE

component separation(mm) | W(mm) | a/W | A¢(deg.) | P, (%) | Loss (%)

virtual waist 1.35 -26
3.8

horn aperture 1.5 0 100.0
32

Tens (1=32) 65 |38 | &9 5.3 18
86

window (50mm) 5.1 4.9 90 98.1 1.8
280

murror (f=280) 14.1 2.5 21 97.9 1.6
280

image 13.2 0
350

mirror (f=350) 147 24 25 97.6 1.9
350

cass focus 6.3 90

ITIi. EXAMPLE

As an example, consider the 200—900 GHz optical system
listed in Table I [1], where a diagonal horn is coupled to a
submillimetre-wave telescope through a lens and two off-axis
mirrors. The horn is part of a superconducting mixer which
is located in a cryostat, and therefore the beam has to pass
through a window which must be made as small as possible.
In Table I, we list the normalized truncation radius (a/W), the
phase slippage from the aperture of the horn, and the fractional
amount of power remaining in the co-polar beam F,. Since
the total amount of co-polar power contained in the beam is
proportional to [ |Eo|>d A, where the integral is over the cross
sectional area of the beam, this implies that:

Jeorap | Beol" 44
Juorn 1 Beol"dA
SnalBhal +1Bral
T 45"+ 450"

Pco:

(12)

The An/ ~ are the mode coefficients for the co-polar field at
the horn aperture, and the Bn{ « are the resulting transmitted
mode coefficients after scattering at each stop where truncation
occurs in the beam guide, up to and including the relevant
component. If we use the technique described in [2} to
calculate the amount of power lost at an individual aperture
(and assuming no other truncation loss in the optical system)
we arrive at the figures given in the last column. In Fig. 1,
we use the mode coefficients, phase slippages, and Gaussian
radii to reconstruct the beam profiles at a number of different
planes.

The last column is the loss at each component if one as-
sumes that the beam remains unchanged after passing through
each stop up to that point. The fifth column, however, shows
that the total loss is, in reality, much less than the sum of these
individual losses. Clearly, in this particular case, the apertures
are many wavelengths in diameter, and the beam diffracts only
slightly after passing through each stop. Consequently, the first
lens after the mixer truncates the beam, and this truncated
beam passes all of the way through the optical system without
much further interference. From a modal point of view, the
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Fig. 1. (a) Reconstructed beam profiles at various planes in the example
optical system fed by a diagonal horn (see Table I) in the diagonal 45 deg
or X-Y directions. The two curves correspond to the copolar power (solid
line) and total power (dashed line). Also shown is the beam at the aperture
of a 15m telescope to which the system is coupled. (b) Reconstructed beam
profiles at various planes in the example optical system is the vertical and
horizontal (V-H) directions. The diagonal horn does not have any cross-polar
components in the V-H direction, hence the copolar and total powers are
equal. Also shown in the beam at the aperture of a 15 m telescope to which
the system is coupled.

first lens is acting as a mode filter which rejects some of the
higher order modes. In low noise receivers it is, of course,
desirable to reject the high-order modes at low temperatures
because then less noise is coupled into the system.
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